
Osculatory Interpolation* 

By S. W. Kahng 

Abstract. An explicit method of osculatory interpolation with a function of the form 

R(x) = foo(aoo + go(x)foj(aoi + go(x)fO2(aO2 + - - * + gO(x) 

-fo,mO(ao,mO + go(x)fjo(ajo + gd(x)f,,(aj 
+ * * * + gi(x)fim1(ajm,+ 91(X)f2O(a2O + * + gnil(X) 

.fno(ano + g.(x)fni(ani + - * - + gn(x)fn,m.(an,m9)) ..) 

is described. Error terms for the interpolation are determined. 

1. Introduction. Osculatory interpolation of a continuous function and its first 
mi derivatives at base points x0, xI, X2, * *, x. has been studied by many authors. 
Wendroff described an explicit method using polynomials. Salzer [4] and Thacher 
[5] showed, separately, the method of interpolation with a continued fraction when 
Mi = 1, and indicated that similar interpolation could be made with other classes 
of functions. 

In this paper, we describe a class of interpolation functions and show the explicit 
method of osculatory interpolation with a function in the class. Also, error terms for 
the interpolation are determined. 

2. Interpolating Functions. Interpolation of a function is made ordinarily by a 
polynomial or a rational function and is adequate for most purposes. However, it 
has been shown recently that the generalization of interpolation functions yield new 
results. Larkin [2] has generalized Neville-Aitken's method and Kahng [1] showed 
the generalization of Newton's method and applied it to the approximation prob- 
lems. These generalizations extend the applicable interpolation functions from 
polynomials to rational functions, their transformations, and some nonlinear 
functions. Also, these generalizations enable us to treat the interpolation in a unified 
manner. Kahng has employed the interpolation function 

Q(x) = fo(ao + go(x)fi(a, + gl(x)f2(a2 + * * * + g.-..(x).f(a.) )) . 

This function can also be expressed as Q(x) = fo{Do(x) }, where 

D,(x) = a,+ gq(x).fj+jj{Dj+(x)} , i = 0, 1,2, ... , n- 1, 

and Dn(x) = an. 
Some of the special cases of the above interpolation functions are shown below 

with indices i = 0, 1, * * -, n and j = 0, 1, 2, * - ., n - 1 unless otherwise noted: 

(a) if fj(u) = u, 9j(X) = x - xi, then Q(x) is the Newton's interpolation formula, 
(b) iffj(u) = u, i = 0, 1, .,K - 1,fj(u) = 1/u, i = K, K + 1, n, 

and 9j(X) = x-Xj, then Q(x) can be expanded to the rational function Sn&m/Sm, 
where m = [(n-K + 1)/2] and Sm is a polynomial of degree m, 
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(c) if fo(u) = 1/u in (b), then Q(x) = Sm/Sn.-n, 
(d) if fi(u) = u, gj(x) = sin x - sin xi, then Q(x) is a trigonometric function 

and may be expanded to a finite Fourier series, 
(e) if we set gj(x) = hj(x) - hj(xj), and choose fi(x) and hj(x) from x, 1/x, ex, 

x2, and cos x etc., then we have a class of interpolation functions. 
The conditions on the functions f's and g's for the existence of unique parameters 

ao, a,, ..., an are given below using the following notations: 
Notations. 

h(A) = {h(x)Ix C A}, 

R (h):range of h (x) . 

THEOREM [1]. Given a function y(x) continuous in a finite interval [a, b] and n + 1 
points xi such that a < xo < xi < ... < ?n _ b. 

Then there exists a unique set of parameters ao, al, , a. for the interpolation 
function 

Q(x) = fo(ao + go(x)fi(al + + ?g.i(x)f,(a,)) ).. 

satisfying Q(xi) = y(xi), i = 0, 1, 2, , n and Q(x) is continuous if 
(a) fi is continuous, strictly monotone in (- oc, oc), and the range of fi(x) covers 

(-0o, oo),i = 1,2, *,n, 
(b) fo is continuous and its inverse function fo'l exists in RI(fo), and R(fo) D 

y([a, b]), 
(c) functions gj(x), j = 0 1, 2, *, n - 1 are continuous in [a, b] and 

gj(x)=0 X=Xj, 

#0 x>Xj. 

When above conditions are satisfied, the parameters are determined from the 
following equations in sequence: ao = fo-' (Q(xo)) is determined from Q(xo) = fo(ao), 
al = fi-< ((fo-' (Q(xi)) - ao)/go(xi)) is found from Q(xi) = fo(ao + go(xi)fi(ai)), 
and so on. In practice a divided difference table may be constructed to determine 
the parameters, and the table will be a special case of Table 1. 

3. Osculatory Interpolation. Consider the problem of interpolating a function 
y(x) and its initial mi derivatives of y(x) at xi, i = 0, 1, 2, * , n. 

In case of the Hermite interpolation one uses 

R(x) = aoo + (x - xo)(aoi + (x - xo)(aO2 + * + (x - xo)(aom0 + (x - x0) 

* (aio + (x - x1) (all + (x - x1) (a12 + + (x - x1) (am,,. 

+ (x - Xi). 

(a.o + (x - xn) (a., + x - xn) (a.2 + * + (x - xn) (an.,,)) ... 

as the interpolation function. This function can be generalized in analogies to the 
generalization of the Newton's interpolation function as follows: 
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R(x) = foo(aoo + go(x)foj(aoi + qo(X)fo2 (aO2 + - * . 

(1) + go(x)fomo(aomo + go(x)fjo(ajo + gq(x)fij(aj, + * 

+ gi(x)fi m1(ajm1 + gq(x)f2o (a2o + * 

- - + g.-i(x)fno(ano 

+ 9n (x) f., (a., + + +, (x) fn, ,) (a. mn) ) ) 

This function can also be written as R(x) = foo{Eoo(x) }, where 

Eij(x) = aij + gq(x)f , j+i (E, j+i (x)) 

for i =0 1, 2, **,n; j= 0, 1, *.* ,Im1, 

Eimi(x) = aimi + gq(x)fi+jo(Ej+?,o(x)), 'i = 0,1, **, n- 1 

and 

Enm (I 
) = anmn 

R(x) includes, as special cases, the following functions: 
(a) Hermite interpolation function 

fij(x) = x , gi(X) = x - xi, i = 0, 1, *.* n, n = 0, 1, ***, mi, 

(b) truncated continued fraction interpolation function 

fij(x)=x if i=j=0 
- 1/x otherwise, 

9i(X) = X- xi. 

In what follows we assume certain properties for functions f's and g's and then 
derive a method of osculatory interpolation with R(x) using the following notations: 

fij = fii(Eij~z))X 
k dk 

dx 

= gi(X) , Eij = Eij(x) , E = (Ej(x)) 
dx 

Assume that 
(a) Functions f's and g's have continuous Mth derivatives and f'(x) $ 0 in 

(-oc, oc), where M = max {mili = 0, 1, 2, , n}. 
(b) Each function fij has its inverse function fijl in (-o, oc). 
(c) 

gi(xj)=O if i=j, 

#0 ifi<j, 

and 

gi'(xj) 0 O fori, j = 0, 1, *, n . 

By repeatedly differentiating Eij and f ij we have 
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Eij = aij tr gifi j+,(Ei j+,), 

Elxj = g i-fi. j+1 + g id fi.j+, dx 

E'' = gi"fi?j+l + i' dx f ? 9 2 f'+l (2) dExi = f f1? + /9 dx 

m 

(k 

k=O k) dx 

and omitting the subscripts ij in the right-hand side: 

d fij fE', dx 

dx '"'=fE)2 + f'E" 

2f = f"'(E')3 + 3f"E'E" + f'E"', dx 

d4 j = (E)46f"'(E')2E" 3f"(E")2+fEE +f 
dx 
dX 

d5 i = fv(E) 5 + 1Of'v(E')3E" + 15f"'IE'(Et)2 
dx5 

+ lOf"'(E')2E"' + lOf"E"E"' + 5f"/E'E'v + f'Ev 

From Eqs. (3) we have, if ftj is nonzero, by omitting the subscripts ij in the 
right-hand side: 

(4.1) E ij = (f(Eij)) 

(4.2) Ej= (df/dx)/f', 

(4.3) E' = (d2f/dx2_ f"(E-)2)/f' 

(4.4) E?'-'= (d3f/dx3 - f"'(E')3-3f"E'E")/f 

(4.5) EIv = (d4f/dx4 _ f'v(Et)4 - 6f"'(E')2El - 3f"l(E"t)2 4f-lEIElll)1fl 

E = (d 5f/dx5 - fv(E')5 - 1Of'v(E')3E" -15f "'E'(E) 2 

(4.6) -lOf"'(E")2E"' - lOf"E"E"' -5flEIEIv)f 

We also have from Eqs. (2), if gi(x) # 0, 

(5.1) fi.j+i = (Eij - aij)/gi, 
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(5.2) do f ij+ = (Etj - ft.j+,)Igi 

(5.3) f = i Ej)- k (n)9i dr k f j+l 

and if gq(x) = 0 

(6.1) f = E'jlgi' 

d1 
(6.2) f = 2, (E'j-g"ft,j+-) 

dx fi~~~j+1 2gi~d 

dm-1 / m-2 / \ dk \ 

(6.3) dxM- 
= 

fi+ mgi k= k )9 dXk fid+) 

In the above equations, it is to be understood that if j = mi, then fj+1? =f+1O. 
and if j = mi + 1, then fij = f?i, o and 9t is replaced by gt-+1. 

With the above equations, one can determine the parameters of the interpolation 
function R(x) for y(xj) = R(xi) and y(j)(xi) = R(j)(x ), i = 0 1, 2, . ., , j = 1, 
2, *.A, mi. The procedure is described below using the following notation for 
simplicity: 

h8l(xi) = k 1 (X) I x=xi. dx' 

We are given y(xo) = h(O)(xo) = foo(aoo). Using (4.1), we have aoo = f'O1(h(O)(xo)). 
From y'(xo) = hl) (xo), 

E1o(xo) = hOo(xo)/f'o(ao) 

by (4. 1), 

h1 (xo) = foi(xo) = E'o(xo)/go'(xo) 

by (6.1), and 

ao1 = Eoi(xo) = fo-i(ho(?) (xo)) 

by (4.1). For hoi)(xi), we apply (4. j- 1) and (5.3) alternately until E.i)(xi) is 
obtained. Then apply (6.3) and (4. j- 1) alternately until aij = Eij(xi) is found. 

The above process of determining the parameters is better described by the 
divided difference table shown in Table 1. This table is filled from top to bottom 
and from left to right. In each entry, the term in the left-hand side is computed 
with the equation numbered in the right-hand side of that entry. 

The uniqueness of the interpolation function is dependent on the functions 
fij employed. If fij(x) = x for all i and j, then the interpolation function is unique. 
In other cases the interpolation function may not be unique in the sense that there 
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may be another interpolation function using the same functions f ij and g X that agree 
with y(x) and its derivatives at the given points, yet these two functions may differ. 
However, the above scheme gives unique parameters aij for the given base points. 

We note that the conditions on the functions f's and g's given in the beginning 
of this section may be required to hold in their domains rather than in (- co, co) 
without restricting the results. 

4. Error Term. Let R(x) interpolate y(x) and its first mi derivatives at xo, 
X 1, * * *,xn, 

n 

m = E (mi + 1), 
i=o 
n 

7 (X)= H (x - X )mi+1 
i=O 

and 

F (z) = (z - u) { y (z) -R (z) - (y (x) -R (x))i7r (z)/r (x)} 
where xo, x, ... I x*, and u are all distinct. 

Let I be an interval that connects xo, xi, I x*, and x, J be an interval that 
connects above n + 2 points and u, and let y(x) and R(x) be in Cm+2(J). Then 
F(z) vanishes at least m + 2 times, counting multiplicities, in J. By repeatedly 
applying generalized Rolle's theorem [3], we have 

F(m+l)(z) = (m + )ym)(z) R(m)(z) - (y()-R(x)) ,/r(x)} 

+ (z -) {y(m+)(z) - R (m+l) (z) }, 

and F(m+l)(z) has at least one zero in the interior of J. Call this vanishing point i, 
which is a function of x and u. Then, 

y(x) - R(x) = (y(m)(t) + - 
- 

/f(M+l)( ) - R(m)( ) 

(7)M 
- U R (m+_)_( 

_ 7(x) 

If we set u = I, then 

(8) y(x) - R(x) = (y(m)( ) -R(m) Q))r(x)/m! 

where t is in the interior of I. On the other hand, provided R (m+1) (Q) - 0, if we 
choose 

R(m) Q) 

then 

R(m)( ) + -U R(m+') () = 0 
Ma+ 

and 
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(9) y(x) - R(x) = (y(m)( ) - R1 () (y(m-O)( ))) lr(X) 

where t is in the interior of J. 

5. Choice of R(x). In practical applications, the choice of J's and g's may be deter- 
mined by the desired form of interpolation function, e.g., polynomial, rational 
function of degree n with the numerator polynomial of degree 1, or certain trans- 
formation of a rational function. If there is no restriction as to the form of R(x), 
the best choice may be the interpolation function that gives the smallest error term 
among the functions of certain complexity. However, it is not easy to determine 
such a function without the process of trial and comparison. 

6. Example. Interpolation of the exponential function and its first six derivatives 
at x = 0 was made with seven different types of R(x). Here gj(x) = x, and fjo(x), 
i = 0, 1, ***, 6, and parameters for R(x) are listed in Table 2. As an illustration, 
Interpolation No. 3 in the table represents 

1 + x(l + x(1/2 + x/{6 + x/{-2/3 + x/{-30 + 4x}}})), 

and this can be expanded to a polynomial rational function with numerator and 
denominator degrees four and two, respectively. 

The above interpolations may be considered as Taylor series-like expansions 
since finite Taylor series with m terms can be said to be the polynomial osculatory 
interpolation of a function with its first m - 1 derivatives at a point. 

Lockheed Electronics Company 
Houston, Texas 77058 

1. S. W. KAHNG, Generalized Newton's Interpolation Functions and Their Applications to 
Chebyshev Approximations, Lockheed Electronics Company Report, 1967. 

2. F. M. LARKIN, "Some techniques for rational interpolation," Comput. J., v. 10, 1967, pp. 
178-187. MIR 35 #6334. 

3. A. RALSTON, A First Course in Numerical Analysis, McGraw-Hill, New York, 1965, p. 62, 
74. MR 32 #8479. 

4. H. E. SALZER, "Note on osculatory rational interpolation," Math. Comp., v. 16, 1962, 
pp. 486-491. MR 26 #7133. 

5. H. C. THACHER, JR., "A recursive algorithm for rational osculatory interpolation," SIAM 
Rev., v. 3, 1961, p. 359. 

6. B. WENDROFF, Theoretical Numerical Analysis, Academic Press, New York, 1966. MR 33 
#5080. 


